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Experimental investigations of shear layer instability have shown that some
obviously essential features of the instability properties cannot be described by
the inviscid linearized stability theory of temporally growing disturbances.
Therefore an attempt is made to obtain better agreement with experimental
results by means of the inviscid linearized stability theory of spatially growing
disturbances. Thus using the hyperbolic-tangent velocity profile the eigenvalues
and eigenfunctions were computed numerically for complex wave-numbers and
real frequencies. The results so obtained showed the tendency expected from the
experiments. The physical properties of the disturbed flow are discussed by means
of the computed vorticity distribution and the computed streaklines. It is found
that the disturbed shear layer rolls up in a complicated manner. Furthermore,
the validity of the linearized theory is estimated. The result is that the error due
to the linearization of the disturbance equation should be larger for the vorticity
distribution than for the velocity distribution, and larger for higher disturbance
frequencies than for lower ones. Finally, it can be concluded from the com-
parison between the results of experiments and of both the spatial and temporal
theory by Freymuth that the theory of spatially-growing disturbances describes
the instability properties of a disturbed shear layer more precisely, at least for
small frequencies.

1. Introduction

This paper is concerned with the hydrodynamic instability of boundary layers
that are not bounded by walls and, therefore, are called free boundary layers or
shear layers. They occur in jets and wakes, and a characteristic feature of these
velocity profiles is that they have inflexion points.

It has already been shown by Rayleigh (1880) that velocity profiles with
inflexion points in an inviscid fluid are unstable relative to certain wavy disturb-
ances. The instability mechanism of free boundary layers is an inviscid one,
caused by induction effects, and viscosity has only a damping influence (cf. Lin
1955). Furthermore, for large Reynolds numbers the flow in a free boundary
layer is nearly parallel. Thus results obtained by means of the inviscid linearized
stability theory for unidirectional flow may then be applied to free boundary
layers at large Reynolds numbers.

Stability calculations for special shear layers at finite Reynolds numbers by
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Lessen (1950), Esch (1957) and Betchov & Szewczyk (1963) have in fact shown
that for large Reynolds numbers the neutral curve approaches asymptotically
the neutral value predicted by inviscid theory and that for finite Reynolds
numbers the amplification of disturbances is always smaller than in the inviscid
case. The same result was obtained by Tatsumi & Kakutani (1958), who dealt
with the instability of a plane jet. Also experimental investigations of free
boundary layers of plane and axisymmetric jets carried out by Sato (1960),
Schade & Michalke (1962) and Michalke & Wille (1965) have shown that for
large Reynolds numbers the instability properties of free boundary layers are
not noticeably affected by viscosity. Furthermore, it was found by Michalke &
Schade (1963) that, as far as the instability at infinite Reynolds number is
concerned, jet boundary layers behave like a single shear layer, if the width of
the jet core is large compared with the thickness of the jet boundary layer.
Experimental results obtained from jet boundary layers that satisfy this con-
dition may then be compared with theoretical results for shear layers provided
that the velocity profiles are comparable in both cases.

A shear layer atlarge Reynolds numbers was investigated by Sato (1956, 1959),
using a hot-wire technique. He found that artificial disturbances excited by
sound from a loudspeaker grow exponentially with downstream distance in the
first stage. In order to compare the evaluated growth rates with theoretical
results obtained from the inviscid linearized stability theory of Lessen (1950) for
a special shear layer, Sato transformed linearly the time-dependent growth rate
of the disturbances assumed in the theory into a spatial growth rate by means of
the disturbance phase velocity. This transformation was first used by Schubauer
& Skramstad (1947). Sato found that the measured growth rates were of the
same order of magnitude as the transformed theoretical ones. Concerning the
phase velocity the agreement was equally good. Also Sato (1959) measured the
amplitude distribution of the velocity fluctuations. As long as the disturbances
grew exponentially, showing that the linearized theory was applicable, the
fundamental component of the velocity fluctuation—which should be equivalent
to the disturbance velocity component in the basic flow direction—showed a
phase reversal; i.e. it became zero at one point. This phase reversal was, however,
not placed at the critical layer, but far outside in a region where the velocity of
the basic flow was small. Contrary to this the theoretical amplitude distribution
of the neutral disturbance-—the only one available to Sato—had a phase reversal
at the critical layer. Sato supposed that better agreement would be expected
using the eigenfunctions of (temporally) amplified disturbances.

A similar distribution of velocity fluctuations was observed by Wehrmann &
Wille (1958) in a disturbed axisymmetric jet boundary layer the thickness of
which was small compared with the width of the jet core. Wehrmann (1960) and
Fabian (1960) explained this distribution of velocity fluctuation which showed
also a distinct phase reversal with the existence of ring vortices in the jet boundary
layer. An attempt to explain the formation of vortices in a free boundary layer
by means of the inviscid linearized stability theory was made by Schade &
Michalke (1962). They approximated a measured boundary-layer profile of the
axisymmetric jet by a linear broken-line profile so that the maximum slope of
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both profiles was the same. The comparison of the wave-numbers for temporally
amplified disturbances of the broken-line profile with the measured values
showed relatively good agreement. But the experimental results showed that
there was no strict proportionality between wave-number and disturbance
frequency, contrary to the theory. Therefore the measured phase velocity
depended also on the frequency, while in the theory it was constant.

The amplification of artificially excited disturbances in plane and axisymmetric
jet boundary layers was investigated by Michalke & Wille (1965). In both cases
an exponential growth of the disturbances with increasing downstream distance
was found. But, if the above-mentioned space-time transformation was used,
the comparison of these growth rates with the theoretical ones of the corre-
sponding broken-line profile showed only order-of-magnitude agreement. It was
supposed that the difference in the results was caused by the very rough approxi-
mation of the measured velocity profile by a linear broken-line profile. Therefore
a stability calculation according to inviscid linearized theory was carried out by
Michalke (1964) using the smooth hyperbolic-tangent velocity profile, which is
a very good approximation to the measured jet boundary-layer profiles. For
temporally amplified disturbances the eigenvalues and eigenfunctions were com-
puted numerically. The result, however, was disappointing: application of the
tanh profile yielded no better agreement between theory and experiment,
although in the meantime more detailed and improved measurements had been
presented by Freymuth (1965). Contrary to the experimental results the calcula-
tion yielded proportionality between the wave-number and the frequency and
a constant phase velocity. For the fundamental component of the velocity
fluctuation the discrepancy was still larger. Only for the neutral disturbance
did a phase reversal occur, and this at the critical layer, i.e. at the location of the
inflexion point. For temporally amplified disturbances, however, the theory does
not yield a phase reversal at all, while for the spatially amplified disturbances in
the experiment a phase reversal is found. Thus the question arose as to what
caused these discrepancies. One reason was supposed to lie in the variation of
the velocity profile in the near neighbourhood of the nozzle by which the jet was
generated. There the boundary-layer profile at the nozzle wall changes into the
free boundary-layer profile of the jet. This is connected with a strong shift in the
position of the inflexion point of the velocity profile. But from his thorough
experimental investigation of jet boundary-layer instability Freymuth (1965)
came to the conclusion that the reason lies in the fact that the amplification of dis-
turbances in free boundary layers can only be described by a stability theory for
spatially growing disturbances. Watson (1962) had made the same suggestion for
plane Poiseuille flow. He developed a non-linear stability theory for spatially
growing disturbances.

Furthermore, from theoretical considerations, Gaster (1962) came to the con-
clusion that the growth rates obtained from a stability calculation for temporally-
growing disturbances cannot be transformed linearly with the phase velocity
into spatial growth rates. For weak amplification only, a transformation is
possible by means of the group velocity. In a further paper Gaster (1965) showed
that for strongly spatially amplified disturbances as present in shear layers the
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eigenvalue equation has to be solved for complex wave-numbers in order to
evaluate the spatial growth rate, and he carried out the calculation for the linear
broken-line velocity profile. Gill (1965) investigated the stability of spatially
damped disturbances of Poiseuille flow in a tube and found good agreement with
the experimental results of Leite (1956).

In order to compare the instability properties of spatially growing disturbances
in an inviscid shear layer with those of temporally growing disturbances an
inviscid stability calculation for the hyperbolic-tangent velocity profile was
carried out under the assumption of spatially growing disturbances. The results
are reported below.

2. The inviscid linearized disturbance equation in the two-dimensional
case
For reasons which will become evident later the inviscid linearized disturbance
equation will be derived here in more detail. The flow of an inviscid fluid is
governed in the two-dimensional case by the Helmholtz vorticity equation
dQ 0Q  9Q 0Q

dt st—+uax+'05?;=0. (1)

Here u(x, y,t) and v(, y,t) denote the z- and y-components of the velocity vector

c = (u,v,0), (2)

and Q(x,y,t) denotes the z-component of the vorticity defined by
curlc = (0,0, Q). (3)
Thus (2) yields Q = ov/ox — oujoy. (4)

Suppose now a unidirectional steady basic flow is given by its velocity profile
U(y) and its vorticity distribution

Qo(y) =--U', ()
where the prime denotes differentiation with respect to y. Further, let us super-

impose a small disturbance eu,(z, y,t), ev,(, y,t) and €Q,(x, y,t) upon this basic
flow. Then inserting

u(x, y,t) = Uy) +ewy (2, y, t),} (6)
v(%, Y, t) = ev,(2, Y, 1),
Q,y,t) = Qo(y) +€Qy(x, y, 1) (7)
into (1) we obtain, using (5),
€08, [0t +[U + eu,] € 0Q,/0x —ev,[U" — e 6Q, [oy] = 0. (8)

¢ is a measure of the magnitude of the disturbance. In general the solution of
this non-linear disturbance equation (8) will depend on the disturbance magni-

tude €. Only if U lew); |U"| > |edQ,/dy], )

can the disturbance terms in the brackets of (8) be neglected, and can we obtain
the linearized disturbance equation

8Q, /ot + U 8Q, [ox — U, = 0, (10)
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the solution of which depends on € no more. In the following analysis the condi-
tions (9) are assumed valid. Introducing a stream function ¥, (%, y,t) by

uy = 0Yy[0y, v, =~ oY /om, (11)
we can satisfy the continuity equation. If we restrict ourselves to wavy
disturbances ,

¥1(2,9.6) = B{p(y) em—""}’}

Qy(z,y,t) = R{w(y) e,
where o and £ are constants, equations (11), (10) and (4) yield

(aU-pow+al’¢ =0, }
w=— [¢” - a2¢]s
or, by elimination of w, the Rayleigh equation
(U —Bla) [¢" —a2¢]— U" = 0, (14)

is obtained. For unbounded velocity profiles the disturbances must vanish at
infinity, so the boundary conditions are

(12)

(13)

$(—00) = ¢(+00) = 0. (15)
Since the velocity profile is unbounded,
lim U" =0, (16)
Yy—>+tx

and from (14) and (15) the asymptotic behaviour of ¢ for y > + o0 is

# = —ap )
and for y > —o0 is @' = agp. (18)

The order of the differential equation (14) can be reduced if we set

¢ = exp[[®dy]. (19)
Thus we obtain from (14) the corresponding Riccati equation in ®(y)
' =a2- P24 U" (U - fa). (20)

With (17) and (18) the appropriate boundary conditions become
O(+w)=—0a; P(—0)=+a. (21)

The constants « = a,+e; and f = f,+if; are in general complex. o, is the
wave-number, £ the cyclic frequency or angular velocity of the disturbance and
a; and f; the spatial and temporal growth rates respectively. Without loss of
generality we can assume £, > 0. If we put o, = 0, then the amplitude of the
disturbance depends only on y and ¢. This may be called the timewise case after
Gill (1965). On the other hand, for f; = 0 we have the spacewise case. For the
neutral disturbance a; = f#; = 0 and both cases have the same solution.
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The basic flow whose instability is investigated here is given by the velocity
profile
U(y) = 0-5[1 +tanh y]. (22)
All quantities used here and in the following (except in the appendix) are assumed
to be normalized with the maximum velocity U, of the shear layer and a length
scale L. The instability properties for the timewise case of this velocity profile
(22) were calculated by Michalke (1964). In the following we shall treat the
spacewise case.

3. Evaluation of the eigenvalues for the spacewise case

In order to study the instability properties of the tanh velocity profile (22) in
the spacewise case we have to integrate the differential equation (14) or (20) with
the boundary conditions (15) and (21) respectively for real values £ > 0. We
therefore have to solve an eigenvalue problem in order to determine

a = a(f) = o, +ia,.

For the neutral case a; = 0 the eigenvalues are well known. They are o, = 1 and
B =05, and the eigenfunction ¢ = sechy. Since we are only interested in
disturbances travelling and growing in basic flow direction, we can restrict
ourselves to values 0 < &, < 1, &¢; < 0, and 0 < 8 < 0-5.

In order to evaluate the complex eigenvalues numerically we first introduce
the new independent variable

2z =tanhy (23)
into equation (20). Then using
U” = —tanhysech?y = —2(1—22%) (24)
. dd a?— P2 2z
we obtain o 1-2 T iy2-2fa (25)
and from (21) with 2, = + 1
: D(z,) = —zpa. (26)

Equation (25) was integrated numerically for a fixed value g starting from
2, = —0-975 to z = 0 which gives ®,(0), and starting from 2, = +0-975, which
gives @,(0). The initial values ®(z;) and ®(z,) were calculated by Taylor series
which were expanded about z = z, up to the third-order terms. The derivatives
at the boundaries z, were evaluated from (25) using L’Hospital’s rule. For three
arbitrarily chosen different pairs of & = a, + i, the difference

Fla,, a;) = ©,(0) — ,(0)

was evaluated and improved values o were calculated from the approximated
zeros of F(a,,a;) by linear interpolation. This procedure was repeated until | F|
was sufficiently small. The computation was performed on a Zuse Z23v digital
computer using a Runge-Kutta-Gill procedure with an integration step
]Az] = 0-025.

Some functions ®(z) are plotted in figure 1. The eigenvalues o = a(f) are given
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in table 1 and plotted in figure 2 together with the phase velocity ¢, = 8,/ as
a function of §,. For comparison the curves for the timewise case after Michalke
(1964) are included. We see that the curve for the spatial growth rate (—«;) is
only broadly similar to the curve ac,/c, which is calculated from the timewise .

B e a; Cr
0-500 1 0 05
0-450 0-925761 —0-045556 0-4861
0-400 0-844361 —0-091618 0-4737
0-350 0-753444 —0-137151 0-4645
0-300 0-649548 —0-180226 0-4619
0-250 0-527421 —0-215502 0-4740
0-225 0-457728 —0-226142 0-4916
0-200 0-382625 —0-227691 0-5227
0-175 0-305869 —0-215913 0-5721
0-150 0-235039 —0-190165 0-6382
0-125 0-175861 —0-156126 0-7108
0-100 0-128087 —0-120373 0-7807
0-075 0-088817 —0-086273 0-8444
0-050 0-055452 —0-054846 0-9017
0-206692 0-403129 —0-228425 0-5127
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Fioure 1. Solutions ®(z) of equation (25) for various frequencies f:
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case using the linear transformation x = ¢,# with ¢, = 0-5.t+ The maximum
growth rate is (— ;) = 0-2284 and occurs at # = 0-2067. There the wave-number
@, = 0-4031 and the phase velocity ¢, = 0-5127. Note that the amplification is
very large, since the disturbance amplitude is amplified by a factor

exp (— 2ma,fer,) ~ 35
within a wavelength A.
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Fioure 2. Wave-number ¢, phase velocity ¢, and spatial growth rate —o;
(or acy/c,) vs frequency f,: , Spacewise case; ————— , timewise case.

Furthermore, in the spacewise case the wave-number a; is not strictly propor-
tional to the frequency 8, as in the timewise case. Thus, contrary to the timewise
case, the phase velocity ¢, depends strongly on the frequency, especially for small
frequencies. This behaviour, however, was observed in the experiments
mentioned above.

4, Evaluation of the eigenfunctions in the spacewise case

With the computed eigenvalues we can now evaluate the eigenfunctions ¢ by
integrating equation (14). Since the eigenfunctions are determined except for
an arbitrary multiplicative constant alone, we normalize the initial values

conveniently to $,0) =1; ¢,0)=0. (27)
The initial gradient is found from (19) to be

$'(0) = ©(0) $(0). (28)
Thus $'(0) = ©,(0) +2D;(0). (29)

®(0), however, is known from the evaluation of the eigenvalues (§3). With the
initial values (27) and (29) equation (14) was solved using a Runge-Kutta—Gill
procedure.

In figures 3 and 4 the eigenfunctions ¢,(y) and ¢,(y) are shown for the
frequencies £ = 0-1, § = 0-2, # = 0-3, and £ = 0-4. We see that, contrary to the
timewise case, ¢,(y) and ¢,(y) are not symmetric and antisymmetric respectively.

t In the timewise case the group velocity is identical with the phase velocity, since the
phase velocity does not depend on the frequency.
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A comparison of the eigenfunctions for the most strongly amplified disturbance
is shown in figure 5 for both the spacewise case (f = 0-2067) and the timewise
case (f, = 0-2223).

4

T T T T T T ~y Y
—8 —6 -4 —2 0 2 4 6 8

Fieure 3. Eigenfunctions ¢.(y) of the spacewise case for various frequencies f.

Ficure 4. Eigenfunctions ¢;(y) of the spacewise case for various frequencies .

The derivative ¢’'(y) of the eigenfunction is related to the disturbance velocity
component u; by (11). ¢, and ¢; are shown in figures 6 and 7. Note that fory < 0
the zeros of both ¢, and ¢@; occur at nearly the same values of y. Thus the magni-
tude of u, becomes nearly zero at this point and, therefore, we have a phase

34 Fluid Mech. 23
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reversal which is outside the critical layer (y = 0) for amplified disturbances, as
was observed in the experiments mentioned above. The position of the phase
reversal depends on the frequency g, as can be seen more clearly from the plot
of ®(2) in figure 1 because of the relation

¢’ = Dg. (30)
For f—0 the phase reversal tends to z = —1, i.e. y—>—o0, and for #—0-5 to
z =y = 0, i.e. to the position of the critical layer. This tendency has also been
S 6
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Figure 5. Comparison of the eigenfunctions ¢(y) for the most strongly amplified
disturbance: , Spacewise case ff = 0-2067; ————— , timewise case £, = 0-2223.
¢
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Fioure 6. Derivative ¢, (y) of the eigenfunction in the spacewise case for
various frequencies f.

observed in experiments by Freymuth (1965). In the timewise case |¢'| is
symmetric, and the zeros of ¢, and ¢; are apart from each other. Thus no sharp
phase reversal occurs except for the neutral disturbance.

Thus it is obvious that the theory of spatially growing disturbances includes
many essential features of the instability properties of shear layers which are
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known from experiment. This is not surprising from a physical point of view,
since in the experiments the disturbances in fact grow in space and not in time.
Thus we may conclude that the spacewise theory gives a better description of the
shear-layer instability than the timewise case. But the verification of this state-
ment can only be made by comparing the results of the experimental investiga-
tions with those of both theories. This was performed by Freymuth (1965) and
is described briefly in the appendix.

T_ 025

Ficure 7. Derivative ¢(y) of the eigenfunction in the spacewise case for
various frequencies g.

5. The vorticity distribution in the disturbed shear layer

Let us now discuss some further properties of the disturbed shear layer. With
the computed eigenfunctions we can evaluate the streamlines, the velocity field
and the vorticity distribution of the disturbed flow. It was shown by Michalke
(1964) that the streamlines are not particularly significant. Therefore we shall
first calculate the vorticity distribution.

The distribution of the vorticity 4(y) of the basic flow is given by (5),

Q(y) = —0-58ech?y, (31)
and the disturbance vorticity Q(x, y, t) is defined by (12). The complex amplitude
function w(y) was computed together with the eigenfunctions (§4) using (13)
from the relation o(y) = —{U"|(U - la)} $. (32)
Figures 8 and 9 show w,(y) and w;(y) for the frequencies f = 0-1, f = 0-2, § = 0-3
and B = 0-4. It is evident from (32) that for a; 4 0 the value of w,(0) is zero
because U”(0) = 0, but for the neutral case (§ = 0-5) where w,(y) = 2sech®y we
have w,(0) = 2. Thus analogous to the timewise case there is no uniform con-
vergence of ©,(0) as # tends to the neutral value 0-5. According to (7), (12), and
(31) the total vorticity distribution is given by

Q(x,y,t) = — 0-5sech?y + € e~=i% {w,(y) cos (a,x — Bt) — w,(y) sin (o, z ~ ft)} (33)
and is periodic in time.
34-2
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For a fixed time ¢ the lines of constant vorticity can be evaluated by using an
iteration process. They were computed for the most strongly amplified disturb-
ance (f = 0-2067) fort = T = 2m/8 and for ¢ = 1-57'. The disturbance magnitude
was chosen very small, namely ¢ = 0-0005. The results are plotted in figure 10.

=04

p—o4 T 20

FicUure 9. Vorticity amplitude w,(y) of the spacewise case for various frequencies f.

Note that the length scale in the y-direction is enlarged by a factor 5 in order to
show the phenomenon more clearly. We see that the lines of constant vorticity,
which are straight lines parallel to the z-axis for the undisturbed flow (¢ = 0), are
displaced sinuously by the disturbance. With increasing local disturbance
magnitude &) = ee~uT, (34)
the vorticity is redistributed causing two peaks of vorticity within a disturbance
wavelength A, one for y < 0 and one for y > 0, the latter being smaller than the



Spatially growing disturbances in a shear layer 533

former at the same #. Because of their mutual induction these peaks of vorticity
will superimpose a rotational motion on the basic flow showing quite clearly the
mechanism of instability.
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Ficure 10. Lines of constant vorticity of the disturbed hyperbolic-tangent velocity profile
ia the spacewise case for the frequency £ = 0-2067 of maximum amplification at two
different times ¢; disturbance magnitude ¢ = 0-0005 (inviseid linearized theory).
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6. The streaklines of the disturbed flow

Since the velocity distribution of the disturbed flow according to the inviscid
linearized theory is known, we can also calculate the motion of any particle of
the flow. It may be of special interest to study the spatial development of the
disturbed shear layer, which can be done by means of the streakline pattern.
A streakline is defined as a line connecting the positions of particles at a fixed
time which went through the same point of the flow field at different times. In
experiments the streaklines or their envelopes can be visualized by introducing
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Fraure 11. Streakline pattern of the disturbed hyperbolic-tangent velocity profile in the
spacewise case for the frequency # = 0-2087 at four different times ¢; disturbance magni-

tude € = 0-0005 (inviscid linearized theory).
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smoke or dye into the flow. The velocity field of the disturbed shear layer is
given by (6). Using (11) and (12) we obtain

uw(x,y,t) = 0-5[1+tanhy]+ee~%2{p,(y) cos(a,x — Bt) — Ppi(y) sin (a,x — Bt)},
2(@,y,t) = ee*7{[a;P,(y) + o, §,(y)] cos (o, x — Bt) (35)
+ [ $,(y) — ot bo(y)]sin (x,z — BE)}.
The motion of a particle is governed by the differential equation of the path lines
dz/dt = uw(z(t), y(),t), dy/dt = v(x(t),y(t),?), (36)

where the right-hand sides are given by (35). z(t) and y(t) denote the position of
a particle at the time ¢, In order to determine a pathline the appropriate initial

conditions are
z(ty) = %o,  Ylbo) = Yp- (37)

For the neutral disturbance of the tanh velocity profile the streakline pattern
was computed by Hama (1962).

In our calculation z, was chosen to be zero, and ¢ = 0-0005. For the most
strongly amplified disturbance (8 = 0-2067) the pathlines of particles were calcu-
lated numerically using a Runge-Kutta—Gill procedure starting from z, = 0 and
Yo =0, £0-4812117, + 1-0317184. These points were chosen because there the
undisturbed vorticity Q, = —0-5, —0-4, —0-2 respectively. In order to plot
each streakline for a fixed time with sufficient accuracy one has to compute
pathlines for various initial times ¢, which can be restricted to the interval
0 < £y < T because of the periodicity of the flow with respect to time. In figure 11
the shape of the streaklines is shown for the times ¢t = 7'; 1-26T'; 1-57"; 1-757.
The positions of particles started with constant time delay for each streakline are
marked by points. Furthermore, particlesstartingatt, = 27 (n =0, +1, +2,...)
from its initial position are marked by a circle.

We see that particles starting originally in the region of higher velocity (y > 0)
move to the region of lower velocity (y < 0), where they are retarded so that other
particles started later can pass by and vice versa. Thus the streaklines show
a tendency to roll up in a complicated manner with a coincidental folding of the
lines. The shape of the disturbed shear layer found here is similar to that observed
by means of the smoke technique in jet boundary layers (cf. Michalke & Wille
1965; Freymuth 1965).

7. Estimate of the validity of the linearized theory

Both from the vorticity distribution (figure 10) and from the streaklines
(figure 11) we see that the local disturbance magnitude (34) grows rapidly and
becomes, for instance, € = 0-6185 at 2 = 2A. Therefore the question arises as to
what extent is the linearized theory valid. As mentioned in §2 the linearization
of equation (8) is surely justified, if both conditions (9) are satisfied. We shall
now examine these conditions. The first one gives with (11) and (12)

Uly) > eei(¢’| = &|¢’|. (38)

Since U(y) tends to 1 for y — oo and we have |¢’| < 1 according to figures 6 and 7,
the condition (38) is certainly satisfied for y > 0, if the local disturbance magni-



536 A. Michalke

tude € is sufficiently small. On the other hand, for y + — co the behaviour of our
basic flow is U(y) ~ €%, but that of the disturbance is |¢’| ~ e*¥. Since we
have a, < 1 < 2, the basic velocity vanishes more rapidly for y-» —oco than the
disturbance velocity and, however small € may be, both velocities become com-
parable in a certain region. Yet this may occur far outside the shear layer, and
therefore this violation of condition (38) may be negligible. From the second con-
dition of (9) we obtain with (12)

|U"] » eei%|w’| =€|w’]. (39)

Since U"—see (24)—becomes zero at the critical layer y = 0, this condition is
violated unless |w'| also vanishes at this point. From (32) it follows that

’ — U” !
lwl_t(U—ﬂ/a) s+ (v2gm) ¢} (40}
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Fieure 12. |0'| as a function of y for various frequencies £ in the spacewise case.

This function was calculated and is plotted in figure 12 for # = 0-1, # = 0-4, and
for the most strongly amplified disturbance with § = 0-2067. It is evident that
for amplified disturbances |w'(0)| is unequal to zero, and its value increases
strongly, if B tends to 0-5, i.e. if we approach the neutral case. Thus it follows
that in the neighbourhood of the critical layer the non-linear terms of (8) become
important for amplified disturbances even though the local disturbance magni-
tude € is small. This was stated by Lin (1958). Note that for § = 0-1 we have
max |o’| = 2:6, but max |’| = 23-3 for § = 0-4, although their spatial growth
rates (—a,;) have nearly the same values. Therefore the error due to the lineariza-
tion of equation (8) for # = 0-4 might also be one order of magnitude larger than
for g = 0-1.

Let us now estimate the total error made by the linearization of the equation
of motion. Formally we can write the disturbance equation (8) as an integral

equation 29,
0, = = [le| U2 U]+ Ro) (41)
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where the quantity R, is given by
Rq = €*[u, 98, [0z + v, 082, /0y]. (42)

If we now use the solution of the linearized equation (10), we get

oy = ([ ] -

This equation is only satisfied if the residual term R, can be neglected compared
with €9Q,/ot. Now, we have

€0, /ot = O(ef|w|) (44)

and |Rq| < € |uy 0Q, /0| + |vy 8 /0y| ], (45)
or using (11), (12) and (34) we find

|Rqo| < &Ro(y), (46)

with By = || {|¢'] || +]8] ']} (47)

Analogously we obtain a relation similar to (43) from the Euler equation of
motion for the velocity component u,

euy = [[edu,/ot— R} dt, (48)
where €du, /ot = OER|P'|) (49)
and |R,| = €2|u, du, /0% + v, du,/0y| < &2R,, (50)
with B, = |of{|¢'|*+]|a?|$[*+|¢] |o]}- (51)
For the velocity component v, the relation becomes

ev, = [[edv,/ot — R, dt, (52)
where e v, /ot = O@Ef|a| |¢]) (53)
and |R,| = €%|u, &v,/0x +v, ov,/0y| < &R, (54)
with B, = 2(af?|g| ¢ (55)

It is quite clear that the residual terms depend (i) on the local disturbance
magnitude ¢ and (ii) on y and implicitly on f. If a fixed local disturbance magni-
tude € is assumed, the validity of the linearization will only depend on the terms
E,, R, and R,. They are plotted in the figures 13-15 for # = 0-1, 0-2067 and 0-4.
The ratios between the maximum values of §,, B, and B, are

for f = 0-1

max (&,) : max (Ru) :max (RQ) =006:029:0-52 ~ 1:5:9;
for £ = 0-2067
max (B,): max (R,): max (B,) = 0-39:1-15:2:74 ~ 1:3:7;
for = 0-4
max (&,) : max (R,) : max (R,) = 0:68:2-81:20-20 ~ 1:4:30.

It follows that for fixed frequency the residual terms connected with the velocity
components v; and u, are smaller than those connected with the vorticity Q, and



538 A. Michalke
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Fieure 13. B, as a function of y for various frequencies S in the spacewise case.
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Fieure 15. R, as a function of y for various frequencies f# in the spacewise case.
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that, furthermore, the residual terms for small frequencies are smaller than those
for higher frequencies.

Thus we may conclude that the region of validity of the linearized equation
should be larger for the velocity distribution than for the vorticity distribution
and larger for small frequencies than for higher frequencies. Nevertheless, from
these estimates an exact bound for the validity of the linearized equations cannot
be derived. But from the physical meaning of the Helmholtz equation (1) a good
criterion can be obtained as was shown by Michalke (1965). From the non-linear
equation (1) it follows that, if a particle of the flow is moving along its pathline,
its vorticity remains constant for all times. Suppose now that the vorticity is
constant in time at the point (z,,y,) where the particles forming a streakline
start; then it follows that the streakline has to be identical with a line of constant
vorticity for all times. Furthermore, if the vorticity distribution for x— — o0
(where the disturbance vanishes) has an extremum, it follows from the Helmholtz
equation that this value cannot be exceeded at any time or any point of the flow.

Let us now examine the results of §§5 and 6 by this means. At x =z, =0
the variation AQ in time of the basic vorticity Q(y) caused by the disturbance
vorticity is smaller than

|AQ] < €]Qy] = €|w]. (56)
For the most strongly amplified disturbance the magnitude of w is |w| < 1-7.
Then for the disturbance magnitude ¢ = 0-0005 we find |AQ| < 0-00085, which
should be negligible compared with Qu(y). Thus the assumption that for all
particles starting at x, = 0 the corresponding vorticity is £2y(y) and that the
extremum vorticity is Qy(0) = —0-5 is justified.t The initial values y, of the
five computed streaklines were chosen so that they would be identical with the
lines of constant vorticity Q = —0-2; —0-4; and — 0-5 respectively as described
above. Figure 16 shows the comparison of the streaklines and the corresponding
lines of constant vorticity for ¢t = 7' and ¢ = 1-57". We see that outside the critical
layer y = 0 the agreement is good up to z = 1-5A, where differences appear.
Therefore we may conclude that in these regions of the flow the linearized theory
suffices. Yet in the neighbourhood of the critical layer y = 0 we find disagreement
even for small values of # as expected. The line of initially extremum vorticity
Q = —0-5 is split into two lines with a region of higher vorticity between them.
This is not compatible with the non-linear equations. Yet we know from the
estimates above that the error due to the linearization is expected to be smaller
in the velocity field than in the vorticity field. Since for the calculation of the
streaklines only the velocity field due to the linearized theory is used, it may
therefore be supposed that the streaklines give a more correct impression of tLe
vorticity distribution due to the non-linear theory than the lines of constant
vorticity calculated by means of the linearized theory.

The results obtained by Hama (1962) for the neutral disturbance of the
hyperbolic-tangent velocity profile are more difficult to interpret, since there the
calculated streaklines certainly do not correspond to lines of constant vorticity,

t For comparison the variation AQ in time used by Hama (1962) for his computation

of the streaklines in the neutral case was |AQ| < 0-04, 0-08, 0-2, which seems to be
insufficiently small in relation to the extremum basic vorticity used, (,(0) = — 1.
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because of the relatively large vorticity variation AQ of the particles at the
starting-points as mentioned above. But the principal statement of Hama that
there is no vorticity concentration in the disturbed flow is not strictly correct,
since even in the neutral case a certain vorticity concentration exists in the
disturbed flow as was shown by Michalke (1964).
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Ficure 16. Comparison between the lines of constant vorticity and the corresponding
streaklines for the spacewise case according to the inviscid linearized theory at two
different times ¢. Disturbance frequency # = 0-2067; disturbance magnitude ¢ = 0-0005.

Finally, we can conclude from the above considerations of the non-linear
equation that in shear layers which can be treated as inviscid the streakline
pattern visualized by smoke gives an impression of the vorticity distribution.
But it is known from many authors, cf. Michalke & Wehrmann (1964) and Wille
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(1963), that discrete concentrations of smoke were observed in disturbed free
boundary layers. Freymuth (1965) has shown also that in these regions of the
free boundary layer the flow is not noticeably affected by viscosity and can be
treated as inviscid, if the Reynolds number is large. Thus it follows that these
concentrations of smoke must be identical with concentrations of vorticity which
can be interpreted as discrete vortices. This may be a confirmation that a dis-
turbed free boundary layer rolls up into discrete vortices for large Reynolds
numbers.

Appendix

Comparison of experimental results with those of the spatial and
temporal theory

Freymuth (1965) compared experimental results obtained from disturbed
axisymmetric and plane jet boundary layers with those from the inviscid
linearized stability theory of both the spacewise and timewise case. He found
that from a distance x = 100,, downstream of the nozzles from which the jets
were produced the measured undisturbed velocity profiles can be expressed
approximately by

U(y)/Uy = 0-5[1 +tanh (0-5y/6,,)],

where ©,, is the momentum thickness of the free boundary layer. Since these
profiles depend only implicitly on the Reynolds number through change in ©,,,
this dependence on the Reynolds number can be eliminated by chosing ©,, as
a characteristic length scale. The Reynolds number R, based on the maximum
velocity U, of the shear layer and the momentum boundary-layer thickness @,,
was varied in the interval 61 < Rem < 334. It was confirmed by Freymuth that
by chosing 0, as a length scale the instability properties of the disturbed shear
layer also were independent of the Reynolds number in this interval.

Freymuth excited artificial disturbances of various frequencies f in the jet
boundary layer by a loudspeaker. Then he measured the wavelength A of the
disturbances and the distribution of the velocity fluctuations by means of
a hot-wire technique. From the wavelengths A Freymuth obtained the wave-
numbers a, and plotted these in dimensionless form as a function of the dimen-
sionless frequency, i.e. Strouhal number f®,,/U,, including both the corresponding
theoretical curves of the timewise and spacewise case. We see from figure 17 that
for f0,,/U, < 0-02 the measured values agree with the spacewise rather than the
timewise case. This can also be seen by considering the phase velocity ¢,./U, of
the disturbance, which is plotted in figure 18.

Furthermore, Freymuth measured the fundamental component of the velocity
fluctuation which is equivalent to the fluctuation component in the basic flow
direction (u’ = |ew,|). In figure 19 the measured distribution of |¢’| ~ u’ is
compared with both theoretical curves for a Strouhal number f@,,/U, = 0-008.
Here also a better agreement is found with the spacewise theory. From the
growth of the maximum peak of the velocity fluctuations 4’ in the basic flow
direction 2 Freymuth evaluated the growth rates (—a;0,,) and plotted these as
a function of the Strouhal number f©,,/U;. It is evident from figure 20 that for
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f0,,/U, < 0-01 the growth rates obtained experimentally agree with the space-
wise theory. For f@,,/U, > 0-01 the results are doubtful, because exponentially
growing disturbances exist only for small values z in the basic flow direction.
Freymuth found that, in agreement with theory (§7), for increasing frequency
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Froure 17. Non-dimensional wave-number »s Strouhal number measured in the free
boundary layer of an axisymmetric jet (O, Uy, = 8 m/sec; @, U, = 4 m/sec) and of a plane
jet (O, Uy = 8 m/sec) compared with the spacewise theory (
(————— ) after Freymuth.
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Fiaure 18. Non-dimensional phase velocity vs Strouhal number in the free boundary

layer of an axisymmetric jet (O, U, = 8 m/sec; @, U, = 4 m/sec) and of a plane jet

(O, Uy = 8 m/sec) compared with the spacewise theory (——) and the timewise theory
(-~ ) after Freymuth.
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the influence of the non-linearity becomes remarkable even for small disturb-
ances. It may be noticed that Freymuth was unable to excite disturbances
artificially for frequencies 0-0250 < f0,,/U, < 0-0398, the higher of which limits
is equivalent to the neutral disturbance.
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FicUurk 19. Amplitude distribution |¢’| of the velocity fluctuation in basic flow direction
measured in the axisymmetric jet boundary layer (—.—.— ) forf®,,/U, = 0-008 with the
corresponding distribution due to the spacewise theory (——) and the timewise theory
(=== ) after Freymuth.
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F1cUrE 20. Spatial growth rates measured in the free boundary layer of an axisymmetric
jet (O, U, = 8my/sec) and of & plane jet ({1, Uy = 8 m/sec) compared with those of the
spacewise theory ( ) and the timewise theory (———--— ) after Freymuth.
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Nevertheless from these experimental results we can conclude with Freymuth
that, at least for small frequencies, the growth of disturbances in a free boundary
layer can more precisely be described by the stability theory of spatially growing
disturbances.

This investigation was made at the Institut fiir Turbulenzforschung of the
Deutsche Versuchsanstalt fiir Luft- und Raumfahrt e.V. at Berlin. The author
wishes to express his gratitude to Prof. Dr.-Ing. R. Wille, the Director of the
Institut, and to Dipl.-Ing. P. Freymuth for many stimulating discussions. The
author is also much indebted to the Deutsche Forschungsgemeinschaft, Bad
Godesberg, which kindly gave financial support for the numerical computations.
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